Abstract
A mathematical model must be established to study the motions of ships in order to control them effectively. An assessment of the model depends on the accuracy of hydrodynamic parameters. An algorithm for the parameter identification of the coupled pitch and heave motions in ships is, thus, put forward in this paper. The algorithm proposed is based on particle swarm optimization (PSO) and the opposition-based learning theory known as opposition-based particle swarm optimization (OPSO). A definition of the opposition-based learning algorithm is given first of all, with ideas on how to improve this algorithm and its process being presented next. Secondly, the design of the parameter identification algorithm is put forward, modeling the disturbing force and disturbing moment of the identification system and the output parameters of the identification system. Then, the problem involving the hydrodynamic parameters of motions is identified and the coupled pitch and heave motions of a ship described as an optimization problem with constraints. Finally, the numerical simulations of different sea conditions with unknown parameters are carried out using the PSO and OPSO algorithms. The simulation results show that the OPSO algorithm is relatively stable in terms of the hydrodynamic parameters identification of the coupled pitch and heave motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.