Abstract

The characterization of chaos as a random-like response from a deterministic dynamical system with an extreme sensitivity to initial conditions is well-established, and has provided a stimulus to research in nonlinear dynamical systems in general. In a formal sense, the computation of the Lyapunov Exponent spectrum establishes a quantitative measure, with at least one positive Lyapunov Exponent (and generally bounded motion) indicating a local exponential divergence of adjacent trajectories. However, although the extraction of Lyapunov Exponents can be accomplished with (necessarily noisy) experimental data, this is still a relatively data-intensive and sensitive endeavor. We present here an alternative, pragmatic approach to identifying chaos as a function of system parameters using response frequency characteristics and extending the concept of the spectrogram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.