Abstract

The robustness of the test method based on a single 3D off-axis prismatic specimen for the simultaneous identification of the orthotropic stiffness components of clear wood is addressed. In this method, the specimen is consecutively submitted to uniaxial compression tests along its three orthogonal axes. A data reduction based on anisotropic elasticity is applied to extract active material parameters from 3D full-field deformation measurements provided by stereo-correlation over adjacent faces. Two major limitations of this test method, directly affecting the parameter identification, are analysed and discussed: (1) off-axes angle orientation; (2) friction effects. A numerical study pointed out that radial and tangential rotations of about 29° and 9°, respectively, balances out the strain components in the specimen response. Moreover, friction can be reduced by using mass lubricant or soft material in the contact interface, realising transverse shear deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.