Abstract
A precise definition of identifiability of a parameter is given in terms of consistency in probability for the parameter estimate. Under some mild Uniformity assumptions on the conditional density parameterized by the unknown parameter, necessary and sufficient conditions for the unknown parameter to be identifiable are established. The assumptions and identifiability criteria are expressed in terms of the density of individual observations, conditioned upon all past observations. The results are applied to linear system identification problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.