Abstract

The idempotent graph of a ring R, denoted by I(R), is a graph whose vertices are all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = yx = 0. In this paper we show if D is a division ring, then the clique number of I(Mn(D))(n ≥ 2) is n and for any commutative Artinian ring R the clique number and the chromatic number of I(R) are equal to the number of maximal ideals of R. We prove that for every left Noetherian ring R, the clique number of I(R) is finite. For every finite field F, we also determine an independent set of I(Mn(F)) with maximum size. If F is an infinite field, then we prove that the domination number of I(Mn(F)) is infinite. We show that the idempotent graph of every reduced ring is connected and if n ≥ 3 and D is a division ring, then I(Mn(D)) is connected and moreover diam(I(Mn(D))) ≤ 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.