Abstract

BackgroundGenome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain.ResultsHere we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*α) is a conservative critical value for the p-gain, where α is the level of significance and B the number of tested metabolite pairs.ConclusionsWe show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.

Highlights

  • Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases

  • Current technologies are based on liquid chromatography–mass spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS), flow injection analysis mass spectrometry (FIA-MS/MS) or nuclear magnetic resonance spectroscopy (NMR) [1–3]

  • As the distribution of the p-gain depends on the correlation structure among the metabolites, conservative critical values are beneficial in case of analyzing multiple sets of metabolites, since they can be applied to all analyzed settings

Read more

Summary

Results

We explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*α) is a conservative critical value for the p-gain, where α is the level of significance and B the number of tested metabolite pairs

Conclusions
Background
Results and discussion
Methods
F PðM1Þ ðp-gainÞ α B
Hsia DY
21. R Development Core Team
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call