Abstract

As a central concept in fluid dynamics stability is fundamental in understanding transitions from laminar to turbulent flow. In continuum flows, it is well-established that a transition to turbulence can occur at subcritical Reynolds numbers, in contrast to theoretical predictions. In non-equilibrium molecular dynamics (NEMD), it has been widely observed that at a critical Reynolds number the fluid undergoes an ordering transition from an amorphous phase to a ‘string’ phase. Using the fluctuation theorem (FT) and the dissipation function, we generalize the classical continuum Reynolds-Orr equation to sheared molecular fluids by ascribing a natural description to the nature of stochastic perturbations, i.e. fluctuations in shear stress. Via the Poincare inequality, we arrive at a new stability criterion by providing a lower bound on the exponential decay of perturbations, which reduces to the classical continuum result in the limit of infinite system size. We investigate the nature of these velocity perturbations and conditions necessary for growth in the kinetic energy of perturbations. We obtain a fluid dependent estimate for the critical Reynolds number by which one may estimate the critical Reynolds number at which the fluid transitions to the string phase, thus providing a framework for generalizing classical continuum theories to the microscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.