Abstract

In this work we provide strong experimental evidence for the hydrodynamic nature of the acoustic wave/biomolecule interaction at a solid/liquid interface. By using a wide range of DNAs of various sizes and by assuming DNA attachment as discrete particles through a neutravidin/biotin link, we prove experimentally that the acoustic ratio (dissipation/frequency) is directly related to the molecules' intrinsic viscosity [η]. The relationship of [η] to the size and shape of biomolecules is described in general and more specifically for linear dsDNA; equations are derived linking the measured acoustic ratio to the number of dsDNA base pairs for two acoustic sensors, the QCM and Love-wave devices operating at a frequency of 35 and 155 MHz, respectively. Single-stranded DNAs were also tested and shown to fit well to the equation derived for the double-stranded molecules while new insight is provided on their conformation on a surface. Other types of DNA are also shown to fit the proposed model. The current work establishes a new way of viewing acoustic sensor data and lays down the groundwork for a surface technique where quantitative information can be obtained at the nanometer scale regarding the shape and size, i.e., conformation of biomolecules at an interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call