Abstract

The intersection C ⋂ C <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥</sup> (C ⋂ C <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥<i>h</i></sup> ) of a linear code C and its Euclidean dual C <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥</sup> (Hermitian dual C <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥<i>h</i></sup> ) is called the Euclidean (Hermitian) hull of this code. It is natural to consider the hull-variation problem when a linear code C is transformed to an equivalent code v ∙ C. In this paper we introduce the maximal hull dimension as an invariant of a linear code with respect to the equivalent transformations. Then some basic properties of the maximal hull dimension are studied. We prove that for a nonnegative integer <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">h</i> satisfying 0 ≤ <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">h</i> ≤ <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> – 1, a linear [2 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> , <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> ] <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>q</i></sub> self-dual code is equivalent to a linear <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">h</i> -dimension hull code. On the opposite direction we prove that a linear LCD code over F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2<sup><i>s</i></sup></sub> satisfying <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> ≥ 2 and d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥</sup> ≥ 2 is equivalent to a linear one-dimension hull code under a weak condition. Several new families of LCD negacyclic codes and LCD BCH codes over F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> are also constructed. Our method can be applied to the generalized Reed-Solomon codes and the generalized twisted Reed-Solomon codes to construct arbitrary dimension hull MDS codes. Some new entanglement-assisted quantum error-correction (EAQEC) codes including MDS and almost MDS EAQEC codes are constructed. Many EAQEC codes over small fields are constructed from optimal Hermitian self-dual codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call