Abstract

The by now classical results on convergence rates in the law of large numbers involving the sums ∑ n = 1 ∞ n α r − 2 P ( | S n | > n α ε ) , where r > 0 , α > 1 / 2 , such that α r ⩾ 1 has been extended to the case α = 1 / 2 by adding additional logarithms. All of this has been generalized to random fields by the first named author in [A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, Ann. Probab. 6 (1978) 469–482; A. Gut, Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices, Ann. Probab. 8 (1980) 298–313]. The purpose of the present paper is to treat the case when the αʼs differ in the different directions of the field, as well as mixed cases with some αʼs equal to 1/2 with added logarithms and/or iterated ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.