Abstract

The applicability of the HSAB based electron charge transfer parameter, Δ N, is analyzed for molecular and atomic adsorbates on metal surfaces by means of explicit DFT calculations. For molecular adsorbates Δ N gives reasonable trends of charge transfer if work function is used for electronegativity of metal surface. For this reason, calculated work functions of low Miller index surfaces for 11 different metals are reported. As for reactive atomic adsorbates, e.g., N, O, and Cl, the charge transfer is proportional to the adatom valence times the electronegativity difference between the metal surface and the adatom, where the electronegativity of metal is represented by a linear combination of atomic Mulliken electronegativity and the work function of metal surface. It is further shown that the adatom-metal bond strength is linearly proportional to the metal-to-adatom charge transfer thus making the Δ N parameter a useful indicator to anticipate the corresponding adsorption energy trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call