Abstract

We study birational maps with empty base locus defined by almost complete intersection ideals. Birationality is shown to be expressed by the equality of two Chern numbers. We provide a relatively effective method for their calculation in terms of certain Hilbert coefficients. In dimension 2 the structure of the irreducible ideals–always complete intersections by a classical theorem of Serre–leads by a natural approach to the calculation of Sylvester determinants. We introduce a computer-assisted method (with a minimal intervention by the computer) which succeeds, in degree ≤5, in producing the full sets of equations of the ideals. In the process, it answers affirmatively some questions raised by Cox [Cox, D.A., 2006. Four conjectures: Two for the moving curve ideal and two for the Bezoutian. In: Proceedings of Commutative Algebra and its Interactions with Algebraic Geometry, CIRM, Luminy, France, May 2006 (available in CD media)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.