Abstract

This paper is concerned with the determination of the effective yield strength of two-phase, rigid-perfectly plastic composite materials. The individual phases are assumed to satisfy, for simplicity, incompressible, isotropic yield criteria of the Mises type. The volume fractions of the constituent phases are prescribed, but their distribution within the composite is otherwise arbitrary. Using the homogenization framework of Suquet (1983) to define the homogenized, or effective, yield strength domain of rigid-perfectly plastic composites, a variational statement is introduced allowing the estimation of the associated effective dissipation functions of plastic composites in terms of the effective dissipation functions of corresponding classes of linearly viscous comparison composites. Thus the variational statement suggests a procedure for generating bounds and estimates for the effective yield strength of rigid-perfectly plastic composites from well-known bounds and estimates for the effective properties of the corresponding linear comparison composites. Sample results are given in the form of upper bounds and lower estimates of the Hashin-Shtrikman type for the effective yield strength of two-phase composites with overall isotropy. Additionally, estimates and bounds are also given for the effective strength domains of two-phase laminated and fibre-reinforced composites, with overall transverse isotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.