Abstract
Let X be an algebraic variety defined over an algebraically closed field. We study the fiber of the Riemann–Zariski space above a closed point x∈X. If x is regular, we prove that its homeomorphism type only depends on the dimension of X. If x is a singular point of a normal surface, we show that it only depends on the dual graph of a good resolution of (X,x) up to some precise equivalence. Both results also hold for the normalized non-Archimedean link of x in X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.