Abstract
We study Hochschild (co)homology of commutative and associative up to homotopy algebras with coefficient in a homotopy analogue of symmetric bimodules. We prove that Hochschild (co)homology is equipped with λ-operations and Hodge decomposition generalizing the results in [GS1] and [Lo1] for strict algebras. The main application is concerned with string topology: we obtain a Hodge decomposition compatible with a non-trivial BV-structure on the homology H *(LX) of the free loop space of a triangulated Poincare-duality space. Harrison (co)homology of commutative and associative up to homotopy algebras can be defined similarly and is related to the weight 1 piece of the Hodge decomposition. We study Jacobi-Zariski exact sequence for this theory in characteristic zero. In particular, we define (co)homology of relative A ∞-algebras, i.e., A ∞-algebras with a C ∞-algebra playing the role of the ground ring. We also give a relation between the Hodge decomposition and homotopy Poisson-algebras cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.