Abstract

A frequency-dependent model of tidal friction is used in the determination of the time rate of change of the lunar orbital elements and the angular velocity of the Earth. The variational equations consider eccentricity, the solar tide on the Earth, Earth oblateness, and higher-order terms in the Earth's tidal potential. A linearized solution of the equations governing the precission of the Earth's rotational angular momentum and the lunar ascending node is found. This allows the analytical averaging of the variational equations over the period of relative precession which, though large, is necessarily small in comparison to the time step of the numerical integrator that yields the system history over geological time. Results for this history are presented and are identified as consistent with origin of the Moon by capture. This model may be applied to any planet-satellite system where evolution under tidal friction is of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.