Abstract

Evolution algebras are a special class of nonassociative algebras exhibiting connections with various fields of mathematics. Hilbert evolution algebras generalize the concept in the framework of Hilbert spaces. This allows us to deal with a wide class of infinite-dimensional spaces. We study Hilbert evolution algebras associated to a graph. Inspired by the definitions of evolution algebras we define the Hilbert evolution algebra that is associated to a given graph and the Hilbert evolution algebra that is associated to the symmetric random walk on a graph. For a given graph, we provide the conditions for these structures to be or not to be isomorphic. Our definitions and results extend to the graphs with infinitely many vertices. We also develop a similar theory for the evolution algebras associated to finite graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.