Abstract

We develop the notion of higher Cheeger constants for a measurable set $\Omega \subset \mathbb{R}^N$. By the $k$-th Cheeger constant we mean the value \[h_k(\Omega) = \inf \max \{h_1(E_1), \dots, h_1(E_k)\},\] where the infimum is taken over all $k$-tuples of mutually disjoint subsets of $\Omega$, and $h_1(E_i)$ is the classical Cheeger constant of $E_i$. We prove the existence of minimizers satisfying additional "adjustment" conditions and study their properties. A relation between $h_k(\Omega)$ and spectral minimal $k$-partitions of $\Omega$ associated with the first eigenvalues of the $p$-Laplacian under homogeneous Dirichlet boundary conditions is stated. The results are applied to determine the second Cheeger constant of some planar domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.