Abstract
The high Mach number shock structure singularity arising in moment equations of the Boltzmann equation was investigated. The source of the singularity is shown to be the unbalanced treatment between two high order kinematic and dissipation terms caused by the overreach of Maxwellian molecule assumption. In compressive gaseous flow, the high order stress-strain coupling term of quadratic nature will grow far faster than the strain term, resulting in an imbalance with the linear dissipation term and eventually a blow-up singularity in high thermal nonequilibrium. On the other hand, the singularity arising from unbalanced treatment does not occur in the case of velocity shear and expansion flows, since the high order effects are cancelled under the constraint of the free-molecular asymptotic behavior. As an alternative method to achieve the balanced treatment, Eu's generalized hydrodynamics, consistent with the second law of thermodynamics, was revisited. After introducing the canonical distribution function in exponential form and applying the cumulant expansion to the explicit calculation of the dissipation term, a natural platform suitable for the balanced treatment was derived. The resulting constitutive equation with the nonlinear factor was then shown to be well-posed for all regimes, effectively removing the high Mach number shock structure singularity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.