Abstract

In rabbit luteal cells the transmost element (G2) of the Golgi apparatus bears cytochemical resemblances to the limiting membrane of lysosomes and it was suggested that lysosomal membranes may originate from the above element. But in the normal Golgi apparatus it cannot be made out whether the considered molecules are indeed membrane bound. Perfusing the rabbit ovary with buffer containing monensin or ammonium chloride allowed to vesiculate the trans Golgi network (G2-G1) selectively. Controls showed a well-preserved ultrastructure. Parts of the limiting membrane of the vacuoles derived from the transmost reticulum (G2) were spiny coated and carried an osmiophilic inner layer. They also showed a heavy precipitate for acid phosphatase (AcPase) and were strongly stained with phosphotungstic acid (PTA) at low pH. By neutralizing the acidic groups, involved in the PTA-staining, it was possible to show that the same membranes were more heavily glycosylated. The MvB's and the limiting membrane of lysosomes showed the same staining characteristics. The other membrane domains revealed a gradient in PTA staining and in AcPase activity. It is concluded that the trans Golgi network (G2-G1) is an acidic compartment. The presence of differentially glycosylated membranes reveals a sorting mechanism for membranous components. The highly glycosylated membrane stretches seem to be involved in endocytosis and in the formation of lysosomal membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.