Abstract

A bipartite graph \(G=(U,V,E)\) is an interval bigraph if and only if there is a one to one correspondence between \(U \cup V\) and a family of intervals on the number line such that two vertices of opposing partite sets are neighbors precisely if their corresponding intervals intersect. Interval bigraphs, as well as many subclasses, have been extensively studied by multiple researchers along the years, and many results on their structural and computational properties have been discovered. A bipartite graph \(G=(U,V,E)\) is a circular arc bigraph if and only if there is a one to one correspondence between \(U \cup V\) and a family of arcs on a circle such that two vertices of opposing partite sets are neighbors precisely if their corresponding arcs intersect. While it is a generalization of interval bigraphs, it remains a relatively unexplored topic. Few studies about the class and its proper, unit and Helly subclasses have been presented. In this work, we study some subclasses of these classes. We provide forbidden structure characterizations for the Helly subclass of interval bigraphs, as well as the class of non-bichordal Helly circular arc bigraphs. We also prove that Helly interval bigraphs are a subclass of proper interval bigraphs, and that non-bichordal Helly circular arc bigraphs are a subclass of proper circular arc bigraphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.