Abstract

This study examines the thermal–hydraulic performance of heat sinks having plate, slit, and louver fin patterns. Comparison of the associated heat transfer performance and the effect of fin spacing are made. The results indicate that the enhanced fin patterns like louver or slit fin operated at a higher frontal velocity and at a larger fin spacing is more beneficial than that of plain fin geometry. The heat transfer performance of louver fin is usually better than that of slit fin but accompanies with higher pressure drops. However, it is found that the pressure drops for slit fin is comparable to the louver fin geometry when the fin spacing is reduced to 0.8 mm. This is associated with the appreciable rise of entrance/exit loss (form drag) caused by the slit fin geometry. The test results also reveal a significant drop of heat transfer performance at a low Reynolds number and at a small fin spacing, or the so-called “maximum” phenomenon of Colburn j factor. This is applicable to all the tested geometries. By a careful examination of the test results, it is concluded that this phenomenon is related to the developing/fully developed flow characteristics. In fact, the maximum point occurred roughly at x + = 0.1 where fully developed and developing flow is separated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.