Abstract

Abstract We give an expression for the Garsia entropy of Bernoulli convolutions in terms of products of matrices. This gives an explicit rate of convergence of the Garsia entropy and shows that one can calculate the Hausdorff dimension of the Bernoulli convolution $\nu _{\beta }$ to arbitrary given accuracy whenever $\beta $ is algebraic. In particular, if the Garsia entropy $H(\beta )$ is not equal to $\log (\beta )$ then we have a finite time algorithm to determine whether or not $\operatorname{dim_H} (\nu _{\beta })=1$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.