Abstract

A detailed study of the harmonic technique, which exploits the generation of harmonics resulting from excitation of the nonlinearity of the single Langmuir probe characteristic, is presented. The technique is used to measure electron temperature and its fluctuations in tokamak plasmas and the technical issues relevant to extending the technique to high bandwidth (200 kHz) are discussed. The technique has been implemented in a fast reciprocating probe in the TEXTOR tokamak, gaining the ability to study denser and hotter plasmas than previously possible. A corrected analytical expression is derived for the harmonic currents. Measurement of the probe current by inductive pickup is introduced to improve electrical isolation and bandwidth. The temperature profiles in the boundary plasma of TEXTOR have been measured with high spatial (∼2 mm) and temporal (200 kHz) resolution and compared to those obtained with a double probe. The exact expansion of the probe characteristic in terms of Bessel functions is compared to a computationally efficient power series. Various aspects of the interpretation of the measurement are discussed such as the influence of plasma potential and density fluctuations. The technique is well suited to study fast phenomena such as transient plasma discharges or turbulence and turbulent transport in plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.