Abstract
This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the numerical ones shows high consistency between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.