Abstract

AbstractGiven nonnegative integers , the Hamilton–Waterloo problem asks for a factorization of the complete graph into α ‐factors and β ‐factors. Without loss of generality, we may assume that . Clearly, v odd, , , and are necessary conditions. To date results have only been found for specific values of m and n. In this paper, we show that for any integers , these necessary conditions are sufficient when v is a multiple of and , except possibly when or 3. For the case where we show sufficiency when with some possible exceptions. We also show that when are odd integers, the lexicographic product of with the empty graph of order n has a factorization into α ‐factors and β ‐factors for every , , with some possible exceptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.