Abstract
The classical Hadamard-Fischer-Koteljanskii inequality is an inequality between principal minors of positive definite matrices. In this work, we present an extension of the Hadamard-Fischer-Koteljanskii inequality, that is inspired by the inclusion-exclusion formula for sets. We formulate necessary and sufficient conditions for the inequality to hold. We describe general structures of the collection of index sets involved. In analyzing these structures, a graph-theoretical property that applies to bipartite graphs is found. We establish that if the vertices of a bipartite graph satisfy simple conditions, then the bipartite graph contains a vertex subgraph which is a cycle or a complete subgraph missing a matching. This result is reminiscent of the Hall's marriage theorem for bipartite graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.