Abstract

We consider the class $S(\lambda,\beta,\tau)$ of convergent for all  $x\ge0$
 Taylor-Dirichlet type series of the form
 $$F(x) =\sum_{n=0}^{+\infty}{b_ne^{x\lambda_n+\tau(x)\beta_n}},\ 
 b_n\geq 0\ (n\geq 0),$$
  where  $\tau\colon [0,+\infty)\to
 (0,+\infty)$\ is a continuously differentiable non-decreasing function,
 $\lambda=(\lambda_n)$ and $\beta=(\beta_n)$ are such that $\lambda_n\geq 0, \beta_n\geq 0$ $(n\geq 0)$.
 In the paper we give a partial answer to a question formulated by Salo T.M., Skaskiv O.B., Trusevych O.M. on International conference  ``Complex Analysis and Related Topics'' (Lviv, September 23-28, 2013) ([2]). We prove the following statement: For each increasing function  $h(x)\colon [0,+\infty)\to (0,+\infty)$, $h'(x)\nearrow +\infty$ $ (x\to +\infty)$, every sequence  $\lambda=(\lambda_n)$ such that 
 $\displaystyle\sum_{n=0}^{+\infty}\frac1{\lambda_{n+1}-\lambda_n}<+\infty$
 and for any non-decreasing sequence  $\beta=(\beta_n)$ such that
 $\beta_{n+1}-\beta_n\le\lambda_{n+1}-\lambda_n$ $(n\geq 0)$ 
 there exist a function  $\tau(x)$ such that $\tau'(x)\ge 1$ $(x\geq x_0)$, a function  $F\in S(\alpha, \beta, \tau)$, a set  $E$ and  a constant $d>0$ such that $h-\mathop{meas} E:=\int_E dh(x)=+\infty$ and $(\forall x\in E)\colon\ F(x)>(1+d)\mu(x,F),$ where $\mu(x,F)=\max\{|a_n|e^{x\lambda_n+\tau(x)\beta_n}\colon n\ge 0\}$ is
 the maximal term of the series.
  
 At the same time, we also pose some open questions and formulate one conjecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call