Abstract

Small and large maars exist associated with small and large diatremes, respectively, their subsurface feeder structures. The problem of size and growth of maar-diatreme volcanoes is discussed from a phreatomagmatic point of view from field data, some geophysical data, and short-lived historic maar eruptions. A hydrostatic pressure barrier of usually about 20–30 bars is assumed to control the maximum depth level of explosive magma/groundwater interactions. Similar to the situation in submarine and subglacial volcanism, initial maar-forming water vapour explosions are therefore assumed to occur at shallow depth and to produce a small maar with a shallow diatreme. Because of limited availability of groundwater and ejection of groundwater in the form of steam, the confining pressure barrier is displaced downward. Consequently, water vapour explosions can take place at consecutively deeper levels with the result that the diatreme penetrates downward and grows in size. Since maars are collapse craters resulting from ejection of wallrocks fragmented by water vapour explosions at the level of the diatreme root zone, downward penetration of a diatreme not only results in increase in size of a diatreme but also in increase in size of the overlying maar. As availability of groundwater in limited amounts controls formation of diatremes and their downward penetration, lack of groundwater enables magma to rise within a diatreme and to form a scoria cone or lava lake within the maar, as is frequently found in volcanic fields such as the Eifel area in Germany. In contrast, availability of large amounts of water in near surface environments such as shallow marine, lake, water-rich coastal plains, or water-rich fluviatile gravel beds prevents formation of maars and deep diatremes but causes formation of tuff rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.