Abstract

General relativity predicts that two freely counter-revolving test particles in the exterior field of a central rotating mass take different periods of time to complete the same full orbit; this time difference leads to the gravitomagnetic clock effect. The effect has been derived for circular equatorial orbits; moreover, it has been extended via azimuthal closure to spherical orbits around a slowly rotating mass. In this Letter, a general formula is derived for the main gravitomagnetic clock effect in the case of slow motion along an arbitrary elliptical orbit in the exterior field of a slowly rotating mass. Some of the implications of this result are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.