Abstract

We solve a second-order elliptic equation with quasi-periodic boundary conditions defined on a honeycomb lattice that represents the arrangement of carbon atoms in graphene. Our results generalize those found by Kuchment and Post (Commun Math Phys 275(3):805–826, 2007) to characterize not only the stability but also the instability intervals of the solutions. This characterization is obtained from the solutions of the energy eigenvalue problem given by the lattice Hamiltonian. We employ tools of the one-dimensional Floquet theory and specify under which conditions the one-dimensional theory is applicable to the structure of graphene. The systematic study of such stability and instability regions provides a tool to understand the propagation properties and behavior of the electrons wavefunction in a hexagonal lattice, a key problem in graphene-based technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.