Abstract

A discussion of modeling passive scalar transport in turbulent flows is given. Several methods employed to close the scalar-flux term ⟨u′ϕ′⟩ that arises during Reynolds averaging are provided. Alternatives and improvements to the gradient diffusion hypotheses are addressed, most notably, the need for an alternative to the global constant turbulent Schmidt and Prandtl numbers. The reader is given a brief history covering methods used to predict turbulent Schmidt and Prandtl numbers, along with recommendations for future research, based partially on studies by Professor Stuart Churchill. More detailed formulations of turbulent Schmidt or Prandtl numbers will enable better approximations of the influence of turbulence in models of passive scalar flows using the gradient diffusion hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.