Abstract
The main theme of this paper is to study different “Gorenstein defect categories” and their connections. This is done by studying rings for which 𝕂 a c ( Prj- R ) = 𝕂 t a c ( Prj- R ) , that is, rings enjoying the property that every acyclic complex of projectives is totally acyclic. Such studies have been started by Iyengar and Krause over commutative Noetherian rings with a dualizing complex. We show that a virtually Gorenstein Artin algebra is Gorenstein if and only if it satisfies the above mentioned property. Then, we introduce recollements connecting several categories which help in providing categorical characterizations of Gorenstein rings. Finally, we study relative singularity categories that lead us to some more “Gorenstein defect categories”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.