Abstract

We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, letf:(M, g) → (N, g′) be a projective submersion of anm-dimensional Riemannian manifold (M, g) onto an (m−1)-dimensional Riemannian manifold (N, g′). Then (M, g) is locally the Riemannian product of the sheets of two integrable distributions Kerf* and (Kerf*)⊥ whenever (M, g) is one of the two following types: (a) a complete manifold with Ric ≥ 0; (b) a compact oriented manifold with Ric ≤ 0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.