Abstract
The global strong resilience of G with respect to having a fractional perfect matching, also called FSMP number of G, is the minimum number of edges (or resp., edges and/or vertices) whose deletion results in a graph that has no fractional perfect matchings. A graph G is said to be f-fault Hamiltonian if there exists a Hamiltonian cycle in G−F for any set F of edges and/or vertices with |F|≤f. In this paper, we first give a sufficient condition, involving the independent number, to determine the FSMP number of (δ−2)-fault Hamiltonian graphs with minimum degree δ≥2, and then we can derive the FSMP number of some networks, which generalize some known results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.