Abstract

The large number of input factors involved in a sophisticated geotechnical computational model is a challenge in the concept of probabilistic analysis. In the context of model calibration and validation, conducting a sensitivity analysis is substantial as a first step. Sensitivity analysis techniques can determine the key factors which govern the system responses. In this paper, three commonly used sensitivity analysis methods are implemented on a sophisticated geotechnical problem. The computational model of a compressed air energy storage, mined in a rock salt formation, includes many input parameters, each with large amount of uncertainties. Sensitivity measures of different variables involved in the mechanical response of the cavern are computed by different global sensitivity methods, namely, Sobol/Saltelli, Random Balance Design, and Elementary Effect method. Since performing sensitivity analysis requires a large number of model evaluations, the concept of surrogate modelling is utilised to decrease the computational burden. In the following, the accuracy levels of various surrogate techniques are compared. In addition, a comparative study on the applied sensitivity analysis methods shows that the applied sensitivity analysis techniques provide identical parameter importance rankings, although some may also give more information about the system behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call