Abstract

In this paper, we prove the global rigidity of sphere packings on $3$-dimensional manifolds. This is a $3$-dimensional analogue of the rigidity theorem of Andreev–Thurston and was conjectured by Cooper and Rivin in [5]. We also prove a global rigidity result using a combinatorial scalar curvature introduced by Ge and the author in [13].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.