Abstract

In this paper, we attempt to mathematically formulate a susceptible-exposed-infectious-recovered-susceptible (SEIRS) epidemic model to study dynamical behaviors of malware propagation in scale-free networks (SFNs). In the proposed discrete-time epidemic model, we consider defense mechanism of software diversity to limit epidemic spreading in SFNs. Dynamical behaviors of the SEIRS epidemic model is determined by basic reproductive ratio, which is often used as a threshold parameter. Also, the impact of the assignment of diverse software packages on the propagation process is examined. Theoretical results show that basic reproductive ratio is significantly dependent on diverse software packages and the network topology. The installation of diverse software packages on nodes leads to decrease reproductive ratio and malware spreading. The results of numerical simulations are given to validate the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.