Abstract

Since locating all the fixed points of a nonlinear oscillator involves the numerical solution of simultaneous equations, it is useful to observe some of the global convergence characteristics of these techniques. Specifically, the popular Newton or quasi-Newton approaches require numerical evaluation of the Jacobian matrix of the Poincare map. This note focuses attention on the domains of attraction for a number of fixed point techniques applied to a single nonlinear oscillator with a single set of parameters. Clearly, there are many issues here, including proximity to bifurcations, order of the dynamical system, temporal convergence characteristics, i.e. CPU time, and so on, but it is instructive to observe a snapshot of the basins of attraction, the boundaries of which path-following routines seek to avoid when a parameter is changed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.