Abstract

We give a unified view for the glass transition singularities and slow relaxations in supercooled liquids. On the basis of a heuristic argument, we show that the waiting time distribution (WTD) function for the non-trapped diffusive motion is given by a power-law function in the long time limit. Exploiting the lattice model for the stochastic dynamics, we show that the divergence of various moments of the WTD signifies dynamical anomalies which can be assigned to the Vogel-Fulcher ( T VF), glass transition ( T g ) and crossover ( T x ) temperatures in supercooled liquids. Three predictions (i) the Kauzmann temperature T K = T VF, (ii) T g S C ( T g ) ∼ constant and (iii) T x S C ( T x )/ T g S C ( T g ) = 2, where S C(T) is the excess entropy per atom, are made which are consistent with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.