Abstract

Abstract Given the abstract evolution equation y ′ ( t ) = A y ( t ) , t ∈ ℝ , y^{\prime} (t)=Ay(t),t\in {\mathbb{R}}, with a scalar type spectral operator A in a complex Banach space, we find conditions on A, formulated exclusively in terms of the location of its spectrum in the complex plane, necessary and sufficient for all weak solutions of the equation, which a priori need not be strongly differentiable, to be strongly Gevrey ultradifferentiable of order β ≥ 1 \beta \ge 1 , in particular analytic or entire, on ℝ {\mathbb{R}} . We also reveal certain inherent smoothness improvement effects and show that if all weak solutions of the equation are Gevrey ultradifferentiable of orders less than one, then the operator A is necessarily bounded. The important particular case of the equation with a normal operator A in a complex Hilbert space follows immediately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.