Abstract

In this paper we focus on the orthogonal momentum amplituhedron mathcal{O} k, a recently introduced positive geometry that encodes the tree-level scattering amplitudes in ABJM theory. We generate the full boundary stratification of mathcal{O} k for various k and conjecture that its boundaries can be labelled by so-called orthogonal Grassmannian forests (OG forests). We determine the generating function for enumerating these forests according to their dimension and show that the Euler characteristic of the poset of these forests equals one. This provides a strong indication that the orthogonal momentum amplituhedron is homeomorphic to a ball. This paper is supplemented with the Mathematica package orthitroids which contains useful functions for exploring the structure of the positive orthogonal Grassmannian and the orthogonal momentum amplituhedron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.