Abstract

A hyperbolic cycle is a point or an oriented hypersphere of an n-dimensional hyperbolic space. We determine all surjective mappings from the set of hyperbolic cycles to itself which preserve oriented contact between pairs of hyperbolic cycles in both directions (Theorem 1), and all bijections of the set of hyperbolic cycles such that images and pre-images of hyperbolic spears resp. oriented horo-hyperspheres resp. oriented equidistant hypersurfaces are hyperbolic spears resp. oriented horo-hyperspheres resp. oriented equidistant hypersurfaces (Theorems 2 and 3). Two cyclographic projections and connections to Lie geometry and Robertson–Walker spacetimes are studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.