Abstract

We build a unitary extension for an isometry on a Hilbert $C*-module and then, with this extension help, we obtain the minimal unitary dilation for an adjointable contraction starting from one of-its isometric dilations. Having as a starting point a result of B. Sz.-Nagy and C. Foias regarding the geometric structure of the minimal unitary dilations for Hubert space contractions we prove that this structure maintains itself on Hilbert modules. Finally, we present a necessary and sufficient condition on the minimal isometric dilation in order to admits a Wold-type decomposition, condition which also assures the complementability of the residual part space of the minimal unitary dilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.