Abstract
In this paper, extremely subwavelength evanescent Bessel beam launchers are designed, simulated, and experimentally tested to generate nondiffracting beams. The launching apertures consist of several concentric coils strategically positioned to spatially filter the fields of a single actively fed radiating coil. The geometrical properties of each coil element of the aperture were obtained through a procedure based on the orthogonal matching pursuit algorithm in order to maximize the quality of the launched beam while minimizing manufacturing complexity. Two apertures with outer diameters of 64 and 48 mm were fabricated and the generated field distributions were measured at the operating frequencies of 13.66 and 13.86 MHz, respectively. Desired and measured field distributions exhibited correlations above 0.9 even as the distance from the aperture was increased, demonstrating the ability of the apertures to approximate the field distribution and harmonic content of a Bessel beam. This paper furthers the study and practical implementation of Bessel beams and other types of beams in extremely subwavelength applications such as focusing, wireless power transfer, magnetic stimulation, and microwave ablation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.