Abstract
In the 2015 NASA ROSES solicitation, NASA has expressed strong interest in improving the accuracy of Mars surface characterization using satellite images. Thermal Emission Imaging System (THEMIS), an imager with a spatial resolution of 100 meters, has 10 infrared bands between 6 and 15 micrometers. Thermal Emission Spectrometer (TES), an imager with a spatial resolution of 3 km, has 143 bands between 5 and 50 micrometers. While both imagers have a variety of applications, it would be ideal to generate high-spatial and high-spectral resolution data products by fusing their respective outputs. We present a novel approach to fusing THEMIS and TES satellite images, aiming to improve orbital characterization of Mars’ surface. First, the THEMIS bands must undergo atmospheric compensation (AC) due to the presence of dust, ice, carbon dioxide, etc. A systematic AC procedure using elevation information and spectrally uniform pixels has been developed and implemented. Second, a set of proven pan-sharpening algorithms has been applied to fuse the two sets of images. The pan-sharpened images have the spatial resolution of THEMIS images and the spectral resolution of TES images. The results of extensive experiments using THEMIS and TES data collected near the Syrtis Major region (one of the final 3 candidate landing sites for the Mars 2020 rover) clearly demonstrate the feasibility of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.