Abstract
An independent set of a graph is a subset of pairwise non-adjacent vertices. A complete bipartite set B is a subset of vertices admitting a bipartition B = X ∪ Y , such that both X and Y are independent sets, and all vertices of X are adjacent to those of Y. If both X , Y ≠ ∅ , then B is called proper. A biclique is a maximal proper complete bipartite set of a graph. When the requirement that X and Y are independent sets of G is dropped, we have a non-induced biclique. We show that it is NP-complete to test whether a subset of the vertices of a graph is part of a biclique. We propose an algorithm that generates all non-induced bicliques of a graph. In addition, we propose specialized efficient algorithms for generating the bicliques of special classes of graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.