Abstract

This paper is an in-depth analysis of the generalized $\vartheta$-number of a graph. The generalized $\vartheta$-number, $\vartheta_k(G)$, serves as a bound for both the $k$-multichromatic number of a graph and the maximum $k$-colorable subgraph problem. We present various properties of $\vartheta_k(G)$, such as that the sequence $(\vartheta_k(G))_k$ is increasing and bounded from above by the order of the graph $G$. We study $\vartheta_k(G)$ when $G$ is the strong, disjunction, or Cartesian product of two graphs. We provide closed form expressions for the generalized $\vartheta$-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs, and orthogonality graphs. Our paper provides bounds on the product and sum of the $k$-multichromatic number of a graph and its complement graph, as well as lower bounds for the $k$-multichromatic number on several graph classes including the Hamming and Johnson graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.