Abstract

Abstract The objective of this paper is, for the first time, to extend the fractional Laplacian (−△) s u(x) over the space Ck (Rn ) (which contains S(Rn ) as a proper subspace) for all s > 0 and s ≠ 1, 2, …, based on the normalization in distribution theory, Pizzetti’s formula and surface integrals in Rn . We further present two theorems showing that our extended fractional Laplacian is continuous at the end points 1, 2, … . Two illustrative examples are provided to demonstrate computational techniques for obtaining the fractional Laplacian using special functions, Cauchy’s residue theorem and integral identities. An application to defining the Riesz derivative in the classical sense at odd numbers is also considered at the end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.