Abstract
Abstract The paper concerns the density points with respect to the sequences of intervals tending to zero in the family of Lebesgue measurable sets. It shows that for some sequences analogue of the Lebesgue density theorem holds. Simultaneously, this paper presents proof of theorem that for any sequence of intervals tending to zero a relevant operator ϕJ generates a topology. It is almost but not exactly the same result as in the category aspect presented in [WIERTELAK, R.: A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007), 273–286]. Therefore this paper is a continuation of the previous research concerning similarities and differences between measure and category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.